Close Menu
    Facebook X (Twitter) Instagram
    Facebook Instagram YouTube
    Crypto Go Lore News
    Subscribe
    Saturday, June 7
    • Home
    • Market Analysis
    • Latest
      • Bitcoin News
      • Ethereum News
      • Altcoin News
      • Blockchain News
      • NFT News
      • Market Analysis
      • Mining News
      • Technology
      • Videos
    • Trending Cryptos
    • AI News
    • Market Cap List
    • Mining
    • Trading
    • Contact
    Crypto Go Lore News
    Home»AI News»This AI Paper from Google DeepMind Introduces Enhanced Learning Capabilities with Many-Shot In-Context Learning
    AI News

    This AI Paper from Google DeepMind Introduces Enhanced Learning Capabilities with Many-Shot In-Context Learning

    CryptoExpertBy CryptoExpertApril 28, 2024No Comments4 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email VKontakte Telegram
    This AI Paper from Google DeepMind Introduces Enhanced Learning Capabilities with Many-Shot In-Context Learning
    Share
    Facebook Twitter Pinterest Email Copy Link
    fiverr


    In-context learning (ICL) in large language models (LLMs) utilizes input-output examples to adapt to new tasks without altering the underlying model architecture. This method has transformed how models handle various tasks by learning from direct examples provided during inference. The problem at hand is the limitation of a few-shot ICL in handling intricate tasks. These tasks often demand a deep comprehension that few-shot learning cannot provide, as it operates under the restriction of minimal input data. This scenario could be better for applications requiring detailed analysis and decision-making based on extensive data sets, such as advanced reasoning or language translation.

    Existing research in the field of ICL has primarily focused on the few-shot learning capabilities of models like GPT-3, which adapt to new tasks with a limited set of examples. Studies have investigated the performance limits of these models within small context windows, revealing constraints in task complexity and scalability. The development of models with larger context windows, such as Gemini 1.5 Pro, which supports up to 1 million tokens, represents a significant evolution. This expansion allows for exploring many-shot ICL, greatly enhancing the models’ ability to process and learn from a larger dataset.

    Researchers from Google Deepmind have introduced a shift toward many-shot ICL, leveraging larger context windows of models like Gemini 1.5 Pro. This move from few-shot to many-shot learning utilizes increased input examples, significantly enhancing model performance and adaptability across complex tasks. The unique aspect of this methodology is the integration of Reinforced ICL and Unsupervised ICL, which reduce reliance on human-generated content by employing model-generated data and domain-specific inputs alone.

    In terms of methodology, the Gemini 1.5 Pro model was employed to handle an expanded array of input-output examples, supporting up to 1 million tokens in its context window. This allowed the exploration of Reinforced ICL, where the model generates and evaluates its rationales for correctness, and Unsupervised ICL, which challenges the model to operate without explicit rationales. The experiments were conducted across diverse domains, including machine translation, summarization, and complex reasoning tasks, using datasets like MATH for mathematical problem-solving and FLORES for machine translation tasks to test and validate the effectiveness of the many-shot ICL framework.

    bybit

    The results from implementing many-shot ICL demonstrate significant performance enhancements. In machine translation tasks, the Gemini 1.5 Pro model outperformed previous benchmarks, achieving a 4.5% increase in accuracy for Kurdish and a 1.5% increase for Tamil translations compared to earlier models. In mathematical problem-solving, the MATH dataset showed a 35% improvement in solution accuracy when using many-shot settings. These quantitative outcomes validate the effectiveness of many-shot ICL in enhancing the model’s adaptability and accuracy across diverse and complex cognitive tasks.

    In conclusion, the research marks a significant step forward in ICL by transitioning from few-shot to many-shot ICL using the Gemini 1.5 Pro model. By expanding the context window and integrating innovative methodologies like Reinforced and Unsupervised ICL, the study has successfully enhanced model performance across various tasks, including machine translation and mathematical problem-solving. These advancements not only improve the adaptability and efficiency of large language models but also pave the way for more sophisticated applications in AI.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

    🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



    Source link

    Binance
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Telegram Copy Link
    CryptoExpert
    • Website

    Related Posts

    AI News

    Privacy is the most fundamental aspect of human rights! #ai #ainews #chatgpt #openai #technews

    June 7, 2025
    AI News

    Test your AI knowledge | Fun AI Quiz for beginners & Developers

    June 6, 2025
    AI News

    Struggling with One Part? Let AI Guide You, Not Replace You #ai #shorts #homework

    June 5, 2025
    AI News

    Nude photo dikhai parliament me #news #nude #ai #parliament #newsupdate #foryou #shortsvideo #short

    June 4, 2025
    AI News

    Top 10 AI Tools in 2025 🔥 | Life-Changing Tools for Beginners | AI Use at 55 Story

    June 3, 2025
    AI News

    What if the characters knew they were fake? 🤯 #ai #shorts #veo3 #aigenerated

    June 2, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Recommended
    Editors Picks

    Privacy is the most fundamental aspect of human rights! #ai #ainews #chatgpt #openai #technews

    June 7, 2025

    Pumpfun pe memecoin kaise bnaye #crypto #guide

    June 7, 2025

    Bitcoin-News on mining-guide.com

    June 7, 2025

    NFT artist relives ‘crypto tax nightmare’ in new song

    June 7, 2025
    Latest Posts

    We are a leading platform dedicated to delivering authoritative insights, news, and resources on cryptocurrencies and blockchain technology. At Crypto Go Lore News, our mission is to empower individuals and businesses with reliable, actionable, and up-to-date information about the cryptocurrency ecosystem. We aim to bridge the gap between complex blockchain technology and practical understanding, fostering a more informed global community.

    Latest Posts

    Privacy is the most fundamental aspect of human rights! #ai #ainews #chatgpt #openai #technews

    June 7, 2025

    Pumpfun pe memecoin kaise bnaye #crypto #guide

    June 7, 2025

    Bitcoin-News on mining-guide.com

    June 7, 2025
    Newsletter

    Subscribe to Updates

    Get the latest Crypto news from Crypto Golore News about crypto around the world.

    Facebook Instagram YouTube
    • Contact
    • Privacy Policy
    • Terms Of Service
    • Social Media Disclaimer
    • DMCA Compliance
    • Anti-Spam Policy
    © 2025 CryptoGoLoreNews. All rights reserved by CryptoGoLoreNews.

    Type above and press Enter to search. Press Esc to cancel.

    bitcoin
    Bitcoin (BTC) $ 105,901.37
    ethereum
    Ethereum (ETH) $ 2,523.73
    tether
    Tether (USDT) $ 1.00
    xrp
    XRP (XRP) $ 2.18
    bnb
    BNB (BNB) $ 652.35
    solana
    Solana (SOL) $ 150.80
    usd-coin
    USDC (USDC) $ 1.00
    dogecoin
    Dogecoin (DOGE) $ 0.183894
    tron
    TRON (TRX) $ 0.285434
    cardano
    Cardano (ADA) $ 0.665891