Close Menu
    Facebook X (Twitter) Instagram
    Facebook Instagram YouTube
    Crypto Go Lore News
    Subscribe
    Saturday, June 7
    • Home
    • Market Analysis
    • Latest
      • Bitcoin News
      • Ethereum News
      • Altcoin News
      • Blockchain News
      • NFT News
      • Market Analysis
      • Mining News
      • Technology
      • Videos
    • Trending Cryptos
    • AI News
    • Market Cap List
    • Mining
    • Trading
    • Contact
    Crypto Go Lore News
    Home»AI News»Enhancing AI Model’s Scalability and Performance: A Study on Multi-Head Mixture-of-Experts
    AI News

    Enhancing AI Model’s Scalability and Performance: A Study on Multi-Head Mixture-of-Experts

    CryptoExpertBy CryptoExpertApril 26, 2024No Comments4 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email VKontakte Telegram
    Enhancing AI Model’s Scalability and Performance: A Study on Multi-Head Mixture-of-Experts
    Share
    Facebook Twitter Pinterest Email Copy Link
    fiverr


    Large capacity models, such as Large Language Models (LLMs) and Large Multi-modal Models (LMMs), have demonstrated effectiveness across various domains and tasks. Scaling up these models by increasing parameter count enhances performance but significantly reduces inference speed, limiting practicality. Sparse Mixtures of Experts (SMoE) offer a promising alternative, enabling model scalability while mitigating computational costs. However, SMoE faces two key challenges: i) low expert activation and ii) limited analytical capabilities, which hinder its effectiveness and scalability.

    SMoE enhances model capacity while maintaining constant computational demand, yielding superior performance compared to densely-activated models. Unlike dense models, SMoE employs N-independent Feed-Forward Networks (FFN) as experts within each Mixture-of-Experts (MoE) layer and a gating function to distribute weights over these experts’ outputs. The routing mechanism selects the top-k experts from N experts, where k << N facilitates data and expert parallelism. Larger k values often improve model performance but can reduce training efficiency.

    Researchers from Tsinghua University and Microsoft Research introduce Multi-Head Mixture-of-Experts (MH-MoE). MH-MoE utilises a multi-head mechanism to divide each input token into multiple sub-tokens and distribute them across different experts, achieving denser expert activation without increasing computational or parameter complexity. In contrast to SMoE, MH-MoE activates four experts for a single input token by splitting it into four sub-tokens. This allocation enables the model to focus on various representation spaces within experts, facilitating a more nuanced understanding of vision and language patterns. 

    The architecture of MH-MoE addresses issues of low expert activation and token ambiguity by employing a multi-head mechanism to split tokens into sub-tokens and route them to various experts. In MH-MoE, each parallel layer contains a set of N experts, with a multi-head layer projecting inputs followed by token splitting and gating functions to route sub-tokens to experts. The top-k routing mechanism activates experts with the highest scores, and the resulting sub-tokens are processed by these activated experts and rearranged before token merging to maintain input-output shape consistency. The Token-Splitting-Merging (TSM) operation increases the data volume routed to specific experts, resulting in denser expert activation and improved understanding. This process ensures no additional computational cost in subsequent blocks, with a hyperparameter β used to balance parameters and computational complexity with the original SMoE.

    bybit

    The validation perplexity curves for all pretrained models and pre-training tasks are examined under two expert settings (8 experts and 32 experts). MH-MoE consistently maintains lower perplexity than the baselines across various experimental setups, indicating more effective learning. Also, increasing the number of experts correlates with a decrease in perplexity for MH-MoE, suggesting enhanced representation learning capabilities. Downstream evaluation across different pre-training tasks further validates the efficacy of MH-MoE. In English-focused language modeling, MH-MoE achieves the best performance across multiple benchmarks, demonstrating its effectiveness in improving language representation. Similarly, MH-MoE outperforms X-MoE consistently in multi-lingual language modeling, showcasing its superiority in modeling cross-lingual natural language. In masked multi-modal modeling tasks such as visual question answering, visual reasoning, and image captioning, MH-MoE consistently outperforms Dense and X-MoE baselines, underscoring its ability to capture diverse semantic and detailed information within visual data.

    In conclusion, This paper investigates methods for achieving denser expert activation without introducing additional cost while enhancing fine-grained understanding ability. The proposed MH-MoE offers a straightforward implementation of these functionalities. Also, MH-MoE’s simplicity facilitates seamless integration with other SMoE frameworks, improving performance easily. Extensive empirical results across three tasks validate the effectiveness of MH-MoE in achieving these objectives.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    Asjad is an intern consultant at Marktechpost. He is persuing B.Tech in mechanical engineering at the Indian Institute of Technology, Kharagpur. Asjad is a Machine learning and deep learning enthusiast who is always researching the applications of machine learning in healthcare.

    🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



    Source link

    bybit
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Telegram Copy Link
    CryptoExpert
    • Website

    Related Posts

    AI News

    Test your AI knowledge | Fun AI Quiz for beginners & Developers

    June 6, 2025
    AI News

    Struggling with One Part? Let AI Guide You, Not Replace You #ai #shorts #homework

    June 5, 2025
    AI News

    Nude photo dikhai parliament me #news #nude #ai #parliament #newsupdate #foryou #shortsvideo #short

    June 4, 2025
    AI News

    Top 10 AI Tools in 2025 🔥 | Life-Changing Tools for Beginners | AI Use at 55 Story

    June 3, 2025
    AI News

    What if the characters knew they were fake? 🤯 #ai #shorts #veo3 #aigenerated

    June 2, 2025
    AI News

    #reels #viral #fact #tremding #shorts #reels #ai #aitools #fact #factreeks #comedey #news

    June 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Recommended
    Editors Picks

    Pumpfun pe memecoin kaise bnaye #crypto #guide

    June 7, 2025

    Bitcoin-News on mining-guide.com

    June 7, 2025

    NFT artist relives ‘crypto tax nightmare’ in new song

    June 7, 2025

    Singapore Kicking Out Unlicensed Firms is Part of Global Trend

    June 7, 2025
    Latest Posts

    We are a leading platform dedicated to delivering authoritative insights, news, and resources on cryptocurrencies and blockchain technology. At Crypto Go Lore News, our mission is to empower individuals and businesses with reliable, actionable, and up-to-date information about the cryptocurrency ecosystem. We aim to bridge the gap between complex blockchain technology and practical understanding, fostering a more informed global community.

    Latest Posts

    Pumpfun pe memecoin kaise bnaye #crypto #guide

    June 7, 2025

    Bitcoin-News on mining-guide.com

    June 7, 2025

    NFT artist relives ‘crypto tax nightmare’ in new song

    June 7, 2025
    Newsletter

    Subscribe to Updates

    Get the latest Crypto news from Crypto Golore News about crypto around the world.

    Facebook Instagram YouTube
    • Contact
    • Privacy Policy
    • Terms Of Service
    • Social Media Disclaimer
    • DMCA Compliance
    • Anti-Spam Policy
    © 2025 CryptoGoLoreNews. All rights reserved by CryptoGoLoreNews.

    Type above and press Enter to search. Press Esc to cancel.

    bitcoin
    Bitcoin (BTC) $ 105,559.28
    ethereum
    Ethereum (ETH) $ 2,518.94
    tether
    Tether (USDT) $ 1.00
    xrp
    XRP (XRP) $ 2.18
    bnb
    BNB (BNB) $ 649.78
    solana
    Solana (SOL) $ 151.23
    usd-coin
    USDC (USDC) $ 1.00
    dogecoin
    Dogecoin (DOGE) $ 0.187082
    tron
    TRON (TRX) $ 0.279917
    cardano
    Cardano (ADA) $ 0.667619