Close Menu
    Facebook X (Twitter) Instagram
    Facebook Instagram YouTube
    Crypto Go Lore News
    Subscribe
    Saturday, June 7
    • Home
    • Market Analysis
    • Latest
      • Bitcoin News
      • Ethereum News
      • Altcoin News
      • Blockchain News
      • NFT News
      • Market Analysis
      • Mining News
      • Technology
      • Videos
    • Trending Cryptos
    • AI News
    • Market Cap List
    • Mining
    • Trading
    • Contact
    Crypto Go Lore News
    Home»AI News»Huawei AI Introduces ‘Kangaroo’: A Novel Self-Speculative Decoding Framework Tailored for Accelerating the Inference of Large Language Models
    AI News

    Huawei AI Introduces ‘Kangaroo’: A Novel Self-Speculative Decoding Framework Tailored for Accelerating the Inference of Large Language Models

    CryptoExpertBy CryptoExpertMay 2, 2024No Comments4 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email VKontakte Telegram
    Huawei AI Introduces ‘Kangaroo’: A Novel Self-Speculative Decoding Framework Tailored for Accelerating the Inference of Large Language Models
    Share
    Facebook Twitter Pinterest Email Copy Link
    Changelly


    The development of natural language processing has been significantly propelled by the advancements in large language models (LLMs). These models have showcased remarkable performance in tasks like translation, question answering, and text summarization, proving their efficiency in generating high-quality text. However, despite their effectiveness, one major limitation remains their slow inference speed, which hinders their use in real-time applications. This challenge predominantly arises from the memory bandwidth bottleneck rather than a lack of computational power, leading to researchers seeking innovative ways to speed up their inference process.

    The key issue lies in the conventional speculative decoding methods that rely on training separate draft models for faster text generation. These methods typically generate multiple tokens in parallel to accelerate the overall process. Although effective, they come with significant training costs and high latency. The high inference latency associated with these methods is primarily due to their dependence on external drafter models, which introduce additional computations that slow down the process.

    Current methods like Medusa and Lookahead have been designed to introduce more efficient speculative decoding approaches. These approaches aim to train smaller draft models that can work alongside the main language model. However, these methods still face latency issues, as the draft models require substantial computational resources and parameter updates. This slows down the overall inference process, reducing the effectiveness of the acceleration.

    Huawei Noah’s Ark Lab researchers have developed an innovative framework named Kangaroo. This novel method addresses the issue of high latency in speculative decoding by introducing a lossless self-speculative decoding framework. Unlike traditional methods that rely on external drafter models, Kangaroo uses a fixed shallow LLM sub-network as the draft model. Researchers train a lightweight adapter module that connects the two to bridge the gap between the sub-network and the full model, enabling efficient and accurate token generation.

    Binance

    Kangaroo employs an early-exiting mechanism to enhance its efficiency further. This mechanism halts the small model’s prediction once the confidence level of the current token falls below a specific threshold, reducing unnecessary computational latency. The adapter module used in Kangaroo comprises a multi-head attention mechanism and two normalization layers, providing sufficient capacity to ensure high-quality token generation. The early exiting layer balances the token acceptance rate and drafting efficiency trade-offs. The dynamic mechanism of the Kangaroo allows for more efficient token generation by utilizing parallel computing and avoiding unnecessary computations.

    Extensive experiments conducted using Spec-Bench demonstrate the Kangaroo’s effectiveness. It achieved a speedup ratio of up to 1.7× compared to other methods, using 88.7% fewer additional parameters than Medusa, which has 591 million additional parameters. Kangaroo’s significant improvements in speedup ratio are attributed to its double early-exit mechanism and the efficient design of the adapter network. This innovative framework significantly reduces latency, making it highly suitable for real-time natural language processing applications.

    In conclusion, Kangaroo is a pioneering solution in accelerating LLMs’ inference speed. Using a fixed shallow sub-network from the LLM as a draft model, Kangaroo eliminates the need for costly and time-consuming external drafter models. Introducing the early-exit mechanism further enhances the speed and efficiency of the inference process, enabling Kangaroo to outperform other speculative decoding methods. With up to a 1.7× speedup and a drastic reduction in additional parameters, Kangaroo presents a promising approach to improving the efficiency of large language models. It sets a new standard in real-time natural language processing by significantly reducing latency without compromising accuracy.

    Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    Sana Hassan, a consulting intern at Marktechpost and dual-degree student at IIT Madras, is passionate about applying technology and AI to address real-world challenges. With a keen interest in solving practical problems, he brings a fresh perspective to the intersection of AI and real-life solutions.

    🐝 [FREE AI WEBINAR Alert] AI/ML-Driven Forecasting for Power Demand, Supply & Pricing: May 3, 2024 10:00am – 11:00am PDT



    Source link

    coinbase
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Telegram Copy Link
    CryptoExpert
    • Website

    Related Posts

    AI News

    Test your AI knowledge | Fun AI Quiz for beginners & Developers

    June 6, 2025
    AI News

    Struggling with One Part? Let AI Guide You, Not Replace You #ai #shorts #homework

    June 5, 2025
    AI News

    Nude photo dikhai parliament me #news #nude #ai #parliament #newsupdate #foryou #shortsvideo #short

    June 4, 2025
    AI News

    Top 10 AI Tools in 2025 🔥 | Life-Changing Tools for Beginners | AI Use at 55 Story

    June 3, 2025
    AI News

    What if the characters knew they were fake? 🤯 #ai #shorts #veo3 #aigenerated

    June 2, 2025
    AI News

    #reels #viral #fact #tremding #shorts #reels #ai #aitools #fact #factreeks #comedey #news

    June 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Recommended
    Editors Picks

    Singapore Kicking Out Unlicensed Firms is Part of Global Trend

    June 7, 2025

    Song A Day creator recounts ‘tax nightmare’ after making millions from NFT sale

    June 7, 2025

    Mara mined 950 Bitcoin in May, up 35% from April

    June 7, 2025

    Twitch Streamers Compete To Win Bitcoin

    June 7, 2025
    Latest Posts

    We are a leading platform dedicated to delivering authoritative insights, news, and resources on cryptocurrencies and blockchain technology. At Crypto Go Lore News, our mission is to empower individuals and businesses with reliable, actionable, and up-to-date information about the cryptocurrency ecosystem. We aim to bridge the gap between complex blockchain technology and practical understanding, fostering a more informed global community.

    Latest Posts

    Singapore Kicking Out Unlicensed Firms is Part of Global Trend

    June 7, 2025

    Song A Day creator recounts ‘tax nightmare’ after making millions from NFT sale

    June 7, 2025

    Mara mined 950 Bitcoin in May, up 35% from April

    June 7, 2025
    Newsletter

    Subscribe to Updates

    Get the latest Crypto news from Crypto Golore News about crypto around the world.

    Facebook Instagram YouTube
    • Contact
    • Privacy Policy
    • Terms Of Service
    • Social Media Disclaimer
    • DMCA Compliance
    • Anti-Spam Policy
    © 2025 CryptoGoLoreNews. All rights reserved by CryptoGoLoreNews.

    Type above and press Enter to search. Press Esc to cancel.

    bitcoin
    Bitcoin (BTC) $ 105,192.18
    ethereum
    Ethereum (ETH) $ 2,495.28
    tether
    Tether (USDT) $ 1.00
    xrp
    XRP (XRP) $ 2.19
    bnb
    BNB (BNB) $ 648.94
    solana
    Solana (SOL) $ 151.94
    usd-coin
    USDC (USDC) $ 1.00
    dogecoin
    Dogecoin (DOGE) $ 0.186328
    tron
    TRON (TRX) $ 0.279451
    cardano
    Cardano (ADA) $ 0.667925