Close Menu
    Facebook X (Twitter) Instagram
    Facebook Instagram YouTube
    Crypto Go Lore News
    Subscribe
    Sunday, June 8
    • Home
    • Market Analysis
    • Latest
      • Bitcoin News
      • Ethereum News
      • Altcoin News
      • Blockchain News
      • NFT News
      • Market Analysis
      • Mining News
      • Technology
      • Videos
    • Trending Cryptos
    • AI News
    • Market Cap List
    • Mining
    • Trading
    • Contact
    Crypto Go Lore News
    Home»AI News»HyperLLaVA: Enhancing Multimodal Language Models with Dynamic Visual and Language Experts
    AI News

    HyperLLaVA: Enhancing Multimodal Language Models with Dynamic Visual and Language Experts

    CryptoExpertBy CryptoExpertMarch 26, 2024No Comments4 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email VKontakte Telegram
    HyperLLaVA: Enhancing Multimodal Language Models with Dynamic Visual and Language Experts
    Share
    Facebook Twitter Pinterest Email Copy Link
    Coinmama


    Large Language Models (LLMs) have demonstrated remarkable versatility in handling various language-centric applications. To extend their capabilities to multimodal inputs, Multimodal Large Language Models (MLLMs) have gained significant attention. These models are crucial for developing flexible, general-purpose assistants that can understand information from diverse modalities, including text, images, videos, and audio.

    Contemporary MLLMs, such as LLaVA, typically follow a two-stage training protocol: (1) Vision-Language Alignment, where a static projector is trained to synchronize visual features with the language model’s word embedding space, enabling the LLM to understand visual content; and (2) Multimodal Instruction Tuning, where the LLM is fine-tuned on multimodal instruction data to enhance its ability to respond to varied user requests involving visual content.

    Despite the critical importance of these two stages, the projector’s structure and LLM tuning strategy have been relatively underexplored. Most existing research focuses on scaling up pretraining data, instruction-following data, visual encoders, or language models. However, the learned model with static parameters may limit the potential for handling diverse multimodal tasks.

    To address this limitation, researchers have proposed HyperLLaVA, a dynamic version of LLaVA that benefits from a carefully designed expert module derived from HyperNetworks, as illustrated in Figure 2. This expert module generates dynamic parameters based on the input information, enabling the model to adaptively tune both the projector and LLM layers for enhanced reasoning abilities across diverse multimodal tasks.

    bybit

    HyperLLaVA is trained in two steps:

    In vision-language alignment, the projector is divided into static layers (the original MLP in LLaVA) and dynamic layers (visual expert). The static layers’ parameters are fixed, while the dynamic layers’ parameters are dynamically generated based on visual input. The visual expert, leveraging HyperNetworks, assists the static projector in learning a visual-specific projector that adaptively models the visual features according to visual guidance. This approach enables the projector to deliver adaptive visual tokens to the language semantic space.

    In the multimodal instruction tuning stage, the LLM is equipped with a language expert, which models dynamic parameters for LLM blocks. The intermediate output of the LLM is regarded as language guidance that guides the language expert in providing an improved instruction-specific comprehension of the user’s request. By generating unique parameters for every input, the MLLM increases its flexibility, allowing it to make use of similarities between samples across datasets and avoid potential interference between samples within the same dataset.

    The proposed language expert serves as a parameter-efficient fine-tuning approach for MLLMs, yielding comparable performance to the original LLaVA while enhancing the model’s ability to handle diverse multimodal tasks.

    In their experiments, the researchers evaluated HyperLLaVA on multiple datasets, including five VQA datasets (VQAv2, GQA, VizWiz, SQAI, and VQAT) and seven Benchmark Toolkits (POPE, MME, MMB, MMBCN, SEED, LLaVAW, and MM-Vet). The results shown in Table 1 demonstrate that HyperLLaVA outperforms existing state-of-the-art approaches, including larger MLLMs with billions of trainable parameters, on almost all multimodal scenarios across these benchmarks. The carefully designed lightweight visual and language experts empower the static projector and LLM to facilitate different multimodal tasks, surpassing the performance of the original LLaVA across 11 out of 12 benchmarks.

    In conclusion, HyperLLaVA’s innovative, dynamic tuning strategy paves the way for advancements in multimodal learning systems. By adaptively tuning projector and LLM parameters and integrating dynamic visual and language experts, the researchers have introduced a parameter-efficient methodology that surpasses existing performance benchmarks. This approach offers a new horizon for enhancing multimodal task performances through personalized, dynamic adjustments, potentially unlocking new avenues for understanding and integrating multimodal information more seamlessly.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 39k+ ML SubReddit

    Vineet Kumar is a consulting intern at MarktechPost. He is currently pursuing his BS from the Indian Institute of Technology(IIT), Kanpur. He is a Machine Learning enthusiast. He is passionate about research and the latest advancements in Deep Learning, Computer Vision, and related fields.

    🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



    Source link

    Betfury
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Telegram Copy Link
    CryptoExpert
    • Website

    Related Posts

    AI News

    Privacy is the most fundamental aspect of human rights! #ai #ainews #chatgpt #openai #technews

    June 7, 2025
    AI News

    Test your AI knowledge | Fun AI Quiz for beginners & Developers

    June 6, 2025
    AI News

    Struggling with One Part? Let AI Guide You, Not Replace You #ai #shorts #homework

    June 5, 2025
    AI News

    Nude photo dikhai parliament me #news #nude #ai #parliament #newsupdate #foryou #shortsvideo #short

    June 4, 2025
    AI News

    Top 10 AI Tools in 2025 🔥 | Life-Changing Tools for Beginners | AI Use at 55 Story

    June 3, 2025
    AI News

    What if the characters knew they were fake? 🤯 #ai #shorts #veo3 #aigenerated

    June 2, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Recommended
    Editors Picks

    Patent hoarder sues BTC miners over Bitcoin using its IP

    June 8, 2025

    How a 91% Audit Score Signals DeFi’s Maturing Moment

    June 8, 2025

    TRUMP Meme Coin is Unlikely to Recover Soon – Here’s Why

    June 8, 2025

    Privacy is the most fundamental aspect of human rights! #ai #ainews #chatgpt #openai #technews

    June 7, 2025
    Latest Posts

    We are a leading platform dedicated to delivering authoritative insights, news, and resources on cryptocurrencies and blockchain technology. At Crypto Go Lore News, our mission is to empower individuals and businesses with reliable, actionable, and up-to-date information about the cryptocurrency ecosystem. We aim to bridge the gap between complex blockchain technology and practical understanding, fostering a more informed global community.

    Latest Posts

    Patent hoarder sues BTC miners over Bitcoin using its IP

    June 8, 2025

    How a 91% Audit Score Signals DeFi’s Maturing Moment

    June 8, 2025

    TRUMP Meme Coin is Unlikely to Recover Soon – Here’s Why

    June 8, 2025
    Newsletter

    Subscribe to Updates

    Get the latest Crypto news from Crypto Golore News about crypto around the world.

    Facebook Instagram YouTube
    • Contact
    • Privacy Policy
    • Terms Of Service
    • Social Media Disclaimer
    • DMCA Compliance
    • Anti-Spam Policy
    © 2025 CryptoGoLoreNews. All rights reserved by CryptoGoLoreNews.

    Type above and press Enter to search. Press Esc to cancel.

    bitcoin
    Bitcoin (BTC) $ 105,398.24
    ethereum
    Ethereum (ETH) $ 2,514.75
    tether
    Tether (USDT) $ 1.00
    xrp
    XRP (XRP) $ 2.21
    bnb
    BNB (BNB) $ 649.61
    solana
    Solana (SOL) $ 148.92
    usd-coin
    USDC (USDC) $ 0.999971
    dogecoin
    Dogecoin (DOGE) $ 0.182704
    tron
    TRON (TRX) $ 0.28603
    cardano
    Cardano (ADA) $ 0.659727